Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.651
1.
PLoS Negl Trop Dis ; 18(5): e0011897, 2024 May.
Article En | MEDLINE | ID: mdl-38739677

Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.


Arvicolinae , Disease Models, Animal , Leishmania , Leishmaniasis , Mice, Inbred BALB C , Animals , Leishmania/classification , Leishmaniasis/parasitology , Mice , Cricetinae , Arvicolinae/parasitology , Cricetulus , Female
2.
Biomolecules ; 14(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38672424

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Calcium , Chagas Disease , Homeostasis , Leishmaniasis , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Humans , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chagas Disease/metabolism , Calcium/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Homeostasis/drug effects , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Leishmania/drug effects , Leishmania/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
3.
ACS Infect Dis ; 10(5): 1520-1535, 2024 May 10.
Article En | MEDLINE | ID: mdl-38669567

The term "zoonosis" denotes diseases transmissible among vertebrate animals and humans. These diseases constitute a significant public health challenge, comprising 61% of human pathogens and causing an estimated 2.7 million deaths annually. Zoonoses not only affect human health but also impact animal welfare and economic stability, particularly in low- and middle-income nations. Leishmaniasis and schistosomiasis are two important neglected tropical diseases with a high prevalence in tropical and subtropical areas, imposing significant burdens on affected regions. Schistosomiasis, particularly rampant in sub-Saharan Africa, lacks alternative treatments to praziquantel, prompting concerns regarding parasite resistance. Similarly, leishmaniasis poses challenges with unsatisfactory treatments, urging the development of novel therapeutic strategies. Effective prevention demands a One Health approach, integrating diverse disciplines to enhance diagnostics and develop safer drugs. Metalloenzymes, involved in parasite biology and critical in different biological pathways, emerged in the last few years as useful drug targets for the treatment of human diseases. Herein we have reviewed recent reports on the discovery of inhibitors of metalloenzymes associated with zoonotic diseases like histone deacetylases (HDACs), carbonic anhydrase (CA), arginase, and heme-dependent enzymes.


Leishmania , Leishmaniasis , Schistosoma , Schistosomiasis , Zoonoses , Animals , Humans , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Schistosoma/drug effects , Schistosoma/enzymology , Zoonoses/drug therapy , Schistosomiasis/drug therapy , Leishmania/drug effects , Leishmania/enzymology , Carbonic Anhydrases/metabolism , Histone Deacetylases/metabolism , Enzyme Inhibitors/pharmacology
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167078, 2024 Apr.
Article En | MEDLINE | ID: mdl-38364941

Leishmaniasis is a group of infectious diseases caused by protozoa of the Leishmania genus and its immunopathogenesis results from an unbalanced immune response during the infection. Diabetes is a chronic disease resulting from dysfunction of the body's production of insulin or the ability to use it properly, leading to hyperglycemia causing tissue damage and impairing the immune system. AIMS: The objective of this work was to evaluate the effects of hyperglycemia and diabetes during Leishmania amazonensis infection and how these conditions alter the immune response to the parasite. METHODS: An in vitro hyperglycemic stimulus model using THP-1-derived macrophages and an in vivo experimental diabetes with streptozotocin (STZ) in C57BL/6 mice was employed to investigate the impact of diabetes and hyperglicemia in Leishmania amazonensis infection. RESULTS: We observed that hyperglycemia impair the leishmanicidal capacity of macrophages derived from THP-1 cells and reverse the resistance profile that C57BL/6 mice have against infection by L. amazonensis, inducing more exacerbated lesions compared to non-diabetic animals. In addition, the hyperglycemic stimulus favored the increase of markers related to the phenotype of M2 macrophages. The induction of experimental diabetes in C57BL/6 mice resulted in a failure in the production of nitric oxide (NO) in the face of infection and macrophages from diabetic animals failed to process and present Leishmania antigens, being unable to activate and induce proliferation of antigen-specific lymphocytes. CONCLUSION: Together, these data demonstrate that diabetes and hyperglycemia can impair the cellular immune response, mainly of macrophages, against infection by parasites of the genus Leishmania.


Diabetes Mellitus , Hyperglycemia , Leishmania , Leishmaniasis , Animals , Mice , Mice, Inbred C57BL , Leishmaniasis/complications , Leishmaniasis/parasitology , Leishmania/physiology , Macrophages , Hyperglycemia/complications , Immunity
5.
Acta Parasitol ; 69(1): 616-627, 2024 Mar.
Article En | MEDLINE | ID: mdl-38294711

PURPOSE: Trypanosoma cruzi and Leishmania spp. coexist in several endemic areas, and there are few studies of Chagas disease and leishmaniasis coinfection worldwide; for this reason, the objective of this work was to determine the Chagas disease and leishmaniasis coinfection in several rural communities co-endemic for these diseases. METHODS: A total of 1107 human samples from six co-endemic rural communities of Cojedes state, Venezuela, were analyzed. Serum samples were evaluated by ELISA, indirect hemagglutination, and indirect immunofluorescence for Chagas disease diagnosis, and individuals were evaluated for leishmaniasis by leishmanin skin test (LST). Approximately, 30% of the individuals were also analyzed by PCR (blood clot samples) for T. cruzi and for Leishmania spp. RESULTS: The 14.7% of the individuals were positive to Trypanosoma cruzi infection by serology, and 25.8% were positive to Leishmania spp. current or past infection by LST. Among the group with PCR results, 7.8% were positive for T. cruzi, and 9.4% for Leishmania spp. The coinfection T. cruzi/Leishmania spp. was 6.5%. The T. cruzi DTUs of the positive blood clot samples were TcI, revealed using the molecular markers: (i) intergenic region of the miniexon, (ii) D7 divergent domain of the 24Sα rDNA, (iii) size-variable domain of the 18S rDNA, and (iv) hsp60-PCR-RFLP (EcoRV). The Leishmania species identified were L. (Leishmania) mexicana and L. (Viannia) braziliensis. CONCLUSION: A high prevalence was found for T. cruzi and Leishmania spp. single and coinfections in almost all communities studied, being these results of relevance for the implementation of control programs in co-endemic areas.


Chagas Disease , Coinfection , Leishmania , Leishmaniasis , Rural Population , Trypanosoma cruzi , Humans , Venezuela/epidemiology , Chagas Disease/epidemiology , Chagas Disease/parasitology , Coinfection/parasitology , Coinfection/epidemiology , Leishmaniasis/epidemiology , Leishmaniasis/parasitology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification , Adult , Adolescent , Male , Child , Female , Middle Aged , Young Adult , Animals , Leishmania/genetics , Leishmania/isolation & purification , Leishmania/classification , Child, Preschool , Zoonoses/parasitology , Zoonoses/epidemiology , Aged , Polymerase Chain Reaction , Antibodies, Protozoan/blood , Infant , Enzyme-Linked Immunosorbent Assay
6.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Article En | MEDLINE | ID: mdl-37088826

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Antigen Presentation , Antigens, Protozoan , CD4-Positive T-Lymphocytes , Calotropis , Gold , Latex , Leishmania donovani , Macrophages , Medicine, Ayurvedic , Th1 Cells , Arsenic , Drug Combinations , Gold/administration & dosage , Gold/pharmacology , Latex/administration & dosage , Latex/pharmacology , Lead , Macrophages/drug effects , Macrophages/immunology , CD4-Positive T-Lymphocytes/immunology , Phagocytes/drug effects , Phagocytes/immunology , Leishmaniasis/immunology , Leishmaniasis/parasitology , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Leishmania donovani/immunology , Antigens, Protozoan/immunology , Th1 Cells/immunology , Animals , Mice , RAW 264.7 Cells , Female , Mice, Inbred BALB C
7.
Acta Parasitol ; 69(1): 121-134, 2024 Mar.
Article En | MEDLINE | ID: mdl-38127288

BACKGROUND: Genome manipulation of Leishmania species and the creation of modified strains are widely employed strategies for various purposes, including gene function studies, the development of live attenuated vaccines, and the engineering of host cells for protein production. OBJECTIVE: Despite the introduction of novel manipulation approaches like CRISPR/Cas9 technology with significant advancements in recent years, the development of a reliable protocol for efficiently and precisely altering the genes of Leishmania strains remains a challenging endeavor. Following the successful adaptation of the CRISPR/Cas9 system for higher eukaryotic cells, several research groups have endeavored to apply this system to manipulate the genome of Leishmania. RESULTS: Despite the substantial differences between Leishmania and higher eukaryotes, the CRISPR/Cas9 system has been effectively tested and applied in Leishmania.  CONCLUSION: This comprehensive review summarizes all the CRISPR/Cas9 systems that have been employed in Leishmania, providing details on their methods and the expression systems for Cas9 and gRNA. The review also explores the various applications of the CRISPR system in Leishmania, including the deletion of multicopy gene families, the development of the Leishmania vaccine, complete gene deletions, investigations into chromosomal translocations, protein tagging, gene replacement, large-scale gene knockout, genome editing through cytosine base replacement, and its innovative use in the detection of Leishmania. In addition, the review offers an up-to-date overview of all double-strand break repair mechanisms in Leishmania.


CRISPR-Cas Systems , Gene Editing , Leishmania , Leishmania/genetics , Gene Editing/methods , Genome, Protozoan , Leishmaniasis/parasitology , Animals
8.
Pathog Dis ; 812023 Jan 17.
Article En | MEDLINE | ID: mdl-38061803

Leishmaniasis is a group of vector-borne diseases caused by intracellular protozoan parasites belonging to the genus Leishmania. Leishmania parasites can employ different and numerous sophisticated strategies, including modulating host proteins, cell signaling, and cell responses by parasite proteins, to change the infected host conditions to favor the parasite persistence and induce pathogenesis. In this sense, protein disulfide isomerases (PDIs) have been described as crucial proteins that can be modulated during leishmaniasis and affect the pathogenesis process. The effect of modulated PDIs can be investigated in both aspects, parasite PDIs and infected host cell PDIs, during infection. The information concerning PDIs is not sufficient in parasitology; however, this study aimed to provide data regarding the biological functions of such crucial proteins in parasites with a focus on Leishmania spp. and their relevant effects on the pathogenesis process. Although there are no clinical trial vaccines and therapeutic approaches, highlighting this information might be fruitful for the development of novel strategies based on PDIs for the management of parasitic diseases, especially leishmaniasis.


Leishmania , Leishmaniasis , Humans , Protein Disulfide-Isomerases/metabolism , Leishmaniasis/parasitology , Protozoan Proteins/metabolism
9.
Parasitol Res ; 123(1): 6, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38052752

Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.


Leishmania , Leishmaniasis , Parasites , Phlebotomus , Psychodidae , Animals , Humans , Psychodidae/parasitology , Phlebotomus/parasitology , Leishmaniasis/parasitology , Host-Parasite Interactions , Mammals
10.
Front Cell Infect Microbiol ; 13: 1326521, 2023.
Article En | MEDLINE | ID: mdl-38149009

Leishmaniasis is a widespread but still underdiagnosed parasitic disease that affects both humans and animals. There are at least 20 pathogenic species of Leishmania, most of them being zoonotic. The diagnosis of leishmaniasis remains a major challenge, with an important role being played by the species of parasites involved, the genetic background, the immunocompetence of the host. This paper brings to the fore the sensitivity of the balance in canine and human leishmaniasis and addresses the importance of the host's immune response in establishing a correct diagnosis, especially in certain cases of asymptomatic leishmaniasis, or in the situation the host is immunosuppressed or acquired leishmaniasis through vertical transmission. The methods considered as a reference in the diagnosis of leishmaniasis no longer present certainty, the diagnosis being influenced mostly by the immune response of the host, which differs according to the presence of other associated diseases or even according to the breed in dogs. Consequently, the diagnosis and surveillance of leishmaniasis cases remains an open topic, requiring new diagnostic methods adapted to the immunological state of the host.


Dog Diseases , Leishmania , Leishmaniasis , Humans , Animals , Dogs , Leishmaniasis/diagnosis , Leishmaniasis/veterinary , Leishmaniasis/parasitology , Leishmania/genetics , Immunity , Dog Diseases/epidemiology
11.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article En | MEDLINE | ID: mdl-38003236

Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.


Antiprotozoal Agents , Leishmania , Leishmaniasis , Humans , Molecular Docking Simulation , Leishmania/metabolism , NADH, NADPH Oxidoreductases/metabolism , Leishmaniasis/parasitology , Antiprotozoal Agents/therapeutic use
12.
Database (Oxford) ; 20232023 10 31.
Article En | MEDLINE | ID: mdl-37935582

Leishmaniasis is a detrimental disease causing serious changes in quality of life and some forms can lead to death. The disease is spread by the parasite Leishmania transmitted by sandfly vectors and their primary hosts are vertebrates including humans. The pathogen penetrates host cells and secretes proteins (the secretome) to repurpose cells for pathogen growth and to alter cell signaling via host-pathogen protein-protein interactions). Here, we present LeishMANIAdb, a database specifically designed to investigate how Leishmania virulence factors may interfere with host proteins. Since the secretomes of different Leishmania species are only partially characterized, we collated various experimental evidence and used computational predictions to identify Leishmania secreted proteins to generate a user-friendly unified web resource allowing users to access all information available on experimental and predicted secretomes. In addition, we manually annotated host-pathogen interactions of 211 proteins and the localization/function of 3764 transmembrane (TM) proteins of different Leishmania species. We also enriched all proteins with automatic structural and functional predictions that can provide new insights in the molecular mechanisms of infection. Our database may provide novel insights into Leishmania host-pathogen interactions and help to identify new therapeutic targets for this neglected disease. Database URL  https://leishmaniadb.ttk.hu/.


Leishmania , Leishmaniasis , Humans , Animals , Leishmania/genetics , Quality of Life , Leishmaniasis/genetics , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Membrane Proteins
13.
Acta Trop ; 248: 107037, 2023 Dec.
Article En | MEDLINE | ID: mdl-37805040

Data on cellular immunity mediators in the early phase of human leishmaniasis are still limited and controversial. In order to mimic the changes of humoral mediators during the early phase of human natural infection, some Th1, Th2, Treg, and Breg cytokines, MCP-1, and the nitric oxide (NO) from human PBMC, stimulated by Leishmania infantum, Leishmania major, Leishmania donovani and Leishmania tropica infective metacyclic promastigotes, were determined. After 4 h of L. major, L. donovani, and L. tropica challenge, TNFα, IL-1ß, IL-6 levels were significantly higher than negative control cultures with saline (SF) instead of Leishmania promastigotes, unlike L. infantum-stimulated TNFα and L. major-stimulated IL-1ß. We obtained higher levels of IL-4 and IL-10 cytokines after stimulation of human PBMCs by L. infantum and L. donovani, compared to those observed after the challenge of PBMCs by L. major and L. tropica. Regarding IL-35, such cytokine levels were significantly increased following infection with L. infantum and L. donovani, in contrast to L. major and L. tropica. Up to our knowledge, we are the first to study the effect of four different species of Leishmania on IL-35 levels in human cells. Our study highlights how several Leishmania species can up-regulate different groups of cytokines (Th1, Th2, Treg and Breg) and modulate NO release in a different way. This original aspect can be explained by different Leishmania cell products, such as LPG, obtained from different strains/species of live parasites. Our findings would contribute to the development of new therapeutics or vaccination strategies.


Leishmania donovani , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Parasites , Animals , Humans , Tumor Necrosis Factor-alpha , Leukocytes, Mononuclear , Leishmaniasis/parasitology , Cytokines , Interleukins , Disease Progression
14.
J Biochem ; 175(1): 17-24, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-37830941

Iron is involved in many biochemical processes including oxygen transport, ATP production, DNA synthesis and antioxidant defense. The importance of iron also applies to Leishmania parasites, an intracellular protozoan pathogen causing leishmaniasis. Leishmania are heme-auxotrophs, devoid of iron storage proteins and the heme synthesis pathway. Acquisition of iron and heme from the surrounding niche is thus critical for the intracellular survival of Leishmania inside the host macrophages. Moreover, Leishmania parasites are also exposed to oxidative stress within phagolysosomes of macrophages in mammalian hosts, and they need iron superoxide dismutase for overcoming this stress. Therefore, untangling the strategy adopted by these parasites for iron acquisition and utilization can be good targets for the development of antileishmanial drugs. Here, in this review, we will address how Leishmania parasites acquire and utilize iron and heme during infection to macrophages.


Leishmania , Leishmaniasis , Parasites , Animals , Leishmania/metabolism , Iron/metabolism , Parasites/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Heme/metabolism , Mammals
15.
Vet Res Commun ; 47(4): 1777-1799, 2023 Dec.
Article En | MEDLINE | ID: mdl-37438495

Leishmania is a genus of parasitic protozoa that causes a disease called leishmaniasis. Leishmaniasis is transmitted to humans through the bites of infected female sandflies. There are several different species of Leishmania that can cause various forms of the disease, and the symptoms can range from mild to severe, depending on species of Leishmania involved and the immune response of the host. Leishmania parasites have a variety of reservoirs, including humans, domestic animals, horses, rodents, wild animals, birds, and reptiles. Leishmaniasis is endemic of 90 countries, mainly in South American, East and West Africa, Mediterranean region, Indian subcontinent, and Central Asia. In recent years, cases have been detected in other countries, and it is already an infection present throughout the world. The increase in temperatures due to climate change makes it possible for sandflies to appear in countries with traditionally colder regions, and the easy movement of people and animals today, facilitate the appearance of Leishmania species in new countries. These data mean that leishmaniasis will probably become an emerging zoonosis and a public health problem in the coming years, which we must consider controlling it from a One Health point of view. This review summarizes the prevalence of Leishmania spp. around the world and the current knowledge regarding the animals that could be reservoirs of the parasite.


Horse Diseases , Leishmania , Leishmaniasis , Psychodidae , Humans , Female , Animals , Horses , Leishmaniasis/epidemiology , Leishmaniasis/veterinary , Leishmaniasis/parasitology , Zoonoses/epidemiology , Psychodidae/parasitology , Rodentia , Horse Diseases/epidemiology
16.
Parasitol Res ; 122(9): 2181-2191, 2023 Sep.
Article En | MEDLINE | ID: mdl-37449994

Phlebotomine sand flies (Diptera: Phlebotominae) belonging to the genus Phlebotomus are vectors of pathogens such as arboviruses, bacteria, and parasites (Leishmania). Species of the genus Sergentomyia (Se.) transmit Sauroleishmania (Reptile Leishmania) and feed on cold-blooded vertebrates; recently, they have been incriminated in mammalian Leishmania transmission. In addition, they have been reported to feed on warm-blooded vertebrates. This study aimed to (i) screen wild-caught Sergentomyia species for the detection of mammalian Leishmania and (ii) identify the blood meal origin of engorged females. The sand flies were collected using centers for disease control and prevention (CDC) traps, mounted and identified morphologically. Only females of the genus Sergentomyia were screened for Leishmania infection using PCR targeting the 18S ribosomal DNA locus. For positive specimens, Leishmania parasites were typed using nested PCR targeting ribosomal internal transcribed spacer 1 followed by digestion with HaeIII. The PCR-RFLP results were confirmed through sequencing. Blood meal identification was performed through PCR amplification of the vertebrate cytochrome b gene using degenerate primers followed by sequencing. In total, 6026 sand fly specimens were collected between 2009 and 2018. Among these, 511 belonged to five species of Sergentomyia genus: Se. minuta (58.51%), Se. fallax (18.01%), Se. clydei (14.68%), Se. dreyfussi (6.26%), and Se. antennata (2.54%). A total of 256 female Sergentomyia sp. specimens were screened for Leishmania infection. Seventeen (17) were positive (6.64%). Two Leishmania species were identified. Leishmania major DNA was detected in five specimens; this included three Se. fallax, one Se. minuta, and one Se. dreyfussi collected from Tunisia. Leishmania infantum/L. donovani complex was detected in four Se. minuta and three Se. dreyfussi specimens collected from Tunisia. In addition, we identified the blood meal origin of five engorged Se. minuta specimens collected from Tunisia. Sequencing results revealed two blood sources: humans (n = 4) and reptiles (n = 1) indicating possible role of Sergentomyia species in the transmission of human Leishmania. In addition, these species could be involved in the life cycle of L. infantum/L. donovani complex and L. major. The results of the blood meal origin showed that Sergentomyia fed on both cold- and warm-blooded vertebrates. These findings enable a better understanding of the behavior of this sand fly genus. Further studies should focus on the role of Sergentomyia in human Leishmania transmission and possible control of this disease.


Leishmania major , Leishmaniasis , Phlebotomus , Psychodidae , Animals , Humans , Female , Psychodidae/parasitology , Tunisia , Saudi Arabia , Phlebotomus/parasitology , Leishmaniasis/parasitology , Vertebrates , Leishmania major/genetics , DNA, Ribosomal , Mammals
17.
Chem Biodivers ; 20(7): e202300523, 2023 Jul.
Article En | MEDLINE | ID: mdl-37263974

Leishmaniasis is a tropical zoonotic disease. It is found in 98 countries, with an estimated 1.3 million people being affected annually. During the life cycle, the Leishmania parasite alternates between promastigote and amastigote forms. The first line treatment for leishmaniasis are the pentavalent antimonials, such as N-methylglucamine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®). These drugs are commonly related to be associated with dangerous side effects such as cardiotoxicity, nephrotoxicity, hepatotoxicity, and pancreatitis. Considering these aspects, this work aimed to obtain a new series of limonene-acylthiosemicarbazides hybrids as an alternative for the treatment of leishmaniasis. For this, promastigotes, axenic amastigotes, and intracellular amastigotes of Leishmania amazonensis were used in the antiproliferative assay; J774-A1 macrophages for the cytotoxicity assay; and electron microscopy techniques were performed to analyze the morphology and ultrastructure of parasites. ATZ-S-04 compound showed the best result in both tests. Its IC50 , in promastigotes, axenic amastigotes and intracellular amastigotes was 0.35±0.08 µM, 0.49±0.06 µM, and 15.90±2.88 µM, respectively. Cytotoxicity assay determined a CC50 of 16.10±1.76 µM for the same compound. By electron microscopy, it was observed that ATZ-S-04 affected mainly the Golgi complex, in addition to morphological changes in promastigote forms of L. amazonensis.


Antiprotozoal Agents , Leishmania , Leishmaniasis , Humans , Animals , Mice , Limonene/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Leishmaniasis/parasitology , Macrophages , Meglumine Antimoniate/pharmacology , Mice, Inbred BALB C
18.
J Cell Sci ; 136(14)2023 07 15.
Article En | MEDLINE | ID: mdl-37357611

Leishmania spp. are obligate intracellular parasites that must be internalized by phagocytic cells to evade immune responses and cause disease. The uptake of both Leishmania promastigotes (insect-stage parasites) and amastigotes (proliferative-stage parasites in humans and mice) by phagocytes is thought to be mainly host cell driven, not parasite driven. Our previous work indicates that host Src- and Abl-family kinases facilitate Leishmania entry into macrophages and pathogenesis in murine cutaneous leishmaniasis. Here, we demonstrate that host spleen tyrosine kinase (SYK) is required for efficient uptake of Leishmania promastigotes and amastigotes. A Src-family kinase-Abl-family kinase-SYK signaling cascade induces Leishmania amastigote internalization. Finally, lesion size and parasite burden during Leishmania infection is significantly decreased in mice lacking SYK in monocytes or by treatment with the SYK inhibitor entospletinib. In summary, SYK is required for maximal Leishmania uptake by macrophages and disease in mice. Our results suggest potential for treating leishmaniasis using host cell-directed agents.


Leishmania , Leishmaniasis , Parasites , Humans , Animals , Mice , Syk Kinase , Phagocytosis , Leishmaniasis/parasitology , Macrophages
19.
ScientificWorldJournal ; 2023: 4628625, 2023.
Article En | MEDLINE | ID: mdl-37151994

Sand flies are the exclusive vectors of leishmaniasis. This group of parasitic diseases is a serious public health problem in Morocco. The aim of this study was to investigate the sand fly fauna, mainly the species composition, biodiversity, and seasonal activity of sand flies in El Hajeb in central Morocco. A total of six stations (Aït Naaman, Aït Rbaa, Aït Brahim, Ain Taoujdate, Sidi Mbarek, and Aït Oufella) were studied, five of which had recently recorded cases of leishmaniasis. Sand fly bimonthly captures were carried out using a sticky paper trap in different biotopes from March to December 2019. A total of 14590 adult sand flies were collected. The activity of the sand fly started in April and declined in November. The periods of high abundance were July, September, and November. Morphological identification of sand flies shows the presence of twelve species: Phlebotomus papatasi, P. longicuspis, P. perniciosus, P. sergenti, P. bergeroti, P. alexandri, P. dreyfussi, P. ariasi, Sergentomyia fallax, S. minuta, S. schwetzi, and S. antennata. The analysis showed that species belonging to the genus Phlebotomus were the most dominant (93.3%) and the risk periods were spread during the summer and autumn seasons. The present study provides for the first time information on the species of sand flies in El Hajeb. It, therefore, provides decision makers with an important tool to conduct vector control actions during peak periods in order to limit the transmission of leishmaniasis. A preprint was made available by the research square in the following link: "https://assets.researchsquare.com/files/rs-1409330/v1/dfef7013-0327-4a54-897f-214924a2d950.pdf?c=1646838874."


Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , Phlebotomus , Psychodidae , Animals , Adult , Humans , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Morocco , Phlebotomus/parasitology , Leishmaniasis/parasitology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/parasitology
20.
J Vis Exp ; (194)2023 04 21.
Article En | MEDLINE | ID: mdl-37154542

Protozoan parasites of the genus Leishmania cause leishmaniasis, a disease with variable clinical manifestations that affects millions of people worldwide. Infection with L. donovani can result in fatal visceral disease. In Panama, Colombia, and Costa Rica, L. panamensis is responsible for most of the reported cases of cutaneous and mucocutaneous leishmaniasis. Studying a large number of drug candidates with the methodologies available to date is quite difficult, given that they are very laborious for evaluating the activity of compounds against intracellular forms of the parasite or for performing in vivo assays. In this work, we describe the generation of L. panamensis and L. donovani strains with constitutive expression of the gene that encodes for an enhanced green fluorescent protein (eGFP) integrated into the locus that encodes for 18S rRNA (ssu). The gene encoding eGFP was obtained from a commercial vector and amplified by polymerase chain reaction (PCR) to enrich it and add restriction sites for the BglII and KpnI enzymes. The eGFP amplicon was isolated by agarose gel purification, digested with the enzymes BglII and KpnI, and ligated into the Leishmania expression vector pLEXSY-sat2.1 previously digested with the same set of enzymes. The expression vector with the cloned gene was propagated in E. coli, purified, and the presence of the insert was verified by colony PCR. The purified plasmid was linearized and used to transfect L. donovani and L. panamensis parasites. The integration of the gene was verified by PCR. The expression of the eGFP gene was evaluated by flow cytometry. Fluorescent parasites were cloned by limiting dilution, and clones with the highest fluorescence intensity were selected using flow cytometry.


Leishmania donovani , Leishmania , Leishmaniasis , Humans , Escherichia coli , Leishmania/genetics , Leishmaniasis/parasitology , Green Fluorescent Proteins/genetics , Leishmania donovani/genetics
...